Main Menu

dot sphere

Started by ATLUS, November 11, 2008, 06:35:47 AM

Previous topic - Next topic

ATLUS

so looked but very slow fps if dot > 750
PlayBASIC Code: [Select]
; PROJECT : Project1
; AUTHOR : ATLUS
; CREATED : 11.11.2008
; EDITED : 11.11.2008
; ---------------------------------------------------------------------
openscreen 640,480,32,1
dots_in_ball = 450; How many dots are in the ball?

; Globals for the 3d.
Global numpoints = dots_in_ball; Number of points in the point table.
Global distance = 700; Needed for perspective.
Global vx#; X location.
Global vy#; Y location.
Global vz#; Z location.

; Arrays used by 3d code.
Dim points(numpoints, 3); Holds the point locations of the game over 3d.


; make points on the surface of a sphere
; calculation to make a sphere:
; x = cos(theta) * cos(phi)
; y = cos(theta) * sin(phi)
; z = sin(theta)
; where theta = -90 to 90
; and phi = 0 to 360
For t= 1 To dots_in_ball
xd = Rndrange(-90,90)
x0 = (Cos(xd) * 10) * (Cos(t) * 10)
y0 = (Cos(xd) * 10) * (Sin(t) * 10)
z0 = Sin(xd) * 100
points(t,1) = x0
points(t,2) = y0
points(t,3) = z0
Next

; Loop till esc is pressed.
do
cls rgb(0,0,0)
threed(); Call the threed thing.
print "Depth Colored Real 3D Dot Ball"
sync; Flip the screen.
loop

Function threed()
vx# = vx# + 0.5; X rotation speed of ball.
vy# = vy# + 0.5; Y rotation speed of ball.
vz# = vz# + 0.5; Z rotation speed of ball.

For n = 1 To numpoints
x3d = points(n, 1)
y3d = points(n, 2)
z3d = points(n, 3)

ty# = ((y3d * Cos(vx#)) - (z3d * Sin(vx#)))
tz# = ((y3d * Sin(vx#)) + (z3d * Cos(vx#)))
tx# = ((x3d * Cos(vy#)) - (tz# * Sin(vy#)))
tz# = ((x3d * Sin(vy#)) + (tz# * Cos(vy#)))
ox# = tx#
tx# = ((tx# * Cos(vz#)) - (ty# * Sin(vz#)))
ty# = ((ox# * Sin(vz#)) + (ty# * Cos(vz#)))
nx = Int(512 * (tx#) / (distance - (tz#))) + 320
ny = Int(240 - (512 * ty#) / (distance - (tz#)))

setcolor(tz#)
;box nx,ny,1,1,0
dot nx,ny
Next
EndFunction

; This function looks at the z-value of the pixel
; and sets the color accoordingly.
Function setcolor(t#)
If t# <= 100 And t# >= 75
ink rgb(250,250,250)
EndIf
If t# <= 75 And t# >= 50
ink rgb(225,225,225)
EndIf
If t# <= 50 And t# >= 25
ink rgb(200,200,200)
EndIf
If t# <= 25 And t# >= 0
ink rgb(175,175,175)
EndIf
If t# <= 0 And t# >= -25
ink rgb(150,150,150)
EndIf
If t# <= -25 And t# >= -50
ink rgb(125,125,125)
EndIf
If t# <= -50 And t# >= -75
ink rgb(100,100,100)
EndIf
If t# <= -75 And t# >= -100
ink rgb(50,50,50)
EndIf
EndFunction




kevin

#1
PlayBASIC Code: [Select]
   MakeBitmapFont 1,$ffffff

ProjectionX#=300
ProjectionY#=300

SizeX=1000
SizeY=1000
SizeZ=1000

NumberOfVertex=5000

SrcVertSize =12
DestVertSize =20

; Create Vertex Buffers
SrcVertexBank =NewBank((NumberOfVertex+1)*SrcVertSize)
DestVertexBank =NewBank((NumberOfVertex+1)*DestVertSize)
SrcAddress =GetBankPtr(SrcVertexBank)

For t=0 To NumberOfVertex
xd = Rndrange(-90,90)
x# = (Cos(xd) * 10) * (Cos(t) * 10)
Y# = (Cos(xd) * 10) * (Sin(t) * 10)
z# = Sin(xd) * 100

PokeFloat SrcAddress ,x#
PokeFloat SrcAddress+4 ,y#
PokeFloat SrcAddress+8 ,z#
SrcAddress=SrcAddress+SrcVertSize
Next

basex#=0
basey#=0
basez#=1500


Dim ShadeBufferBuffer(20000)
NumberOfVertexdepth#=400
scaler#=100/NumberOfVertexdepth#
col=RGB(255,255,255)
For lp=0 To NumberOfVertexdepth#
ShadeBufferBuffer(lp)=RGBFade(col,(NumberOfVertexdepth#-lp)*scaler#)
Next

CreateCamera 1

Do
CaptureToScene
ClsScene


; Rotate vertex list (with XYZ rotation order)
SrcAddress =GetBankPtr(SrcVertexBank)
DestAddress =GetBankPtr(DestVertexBank)
RotateVertexListXYZ SrcAddress,SrcVertSize,DestAddress,DestVertSize,baseX#,basey#,baseZ#,ax#,ay#,az#,NumberOfVertex

t=Timer()
Address =GetBankPtr(DestVertexBank)
counter=NumberOfVertex
Do
z#=PeekFloat(Address+8)
If z#>10
CaptureDepth z#
DotC 400+((PeekFloat(Address)*projectionx#)/z#),300+((PeekFloat(Address+4)*projectiony#)/z#),ShadeBufferBuffer(z#)
EndIf
address=address+DestVertSize
DecLoop counter

t=Timer()-t


DrawCamera 1

if Intro=false
BaseZ#=BaseZ#-2
if BaseZ#<150 then Intro=true

endif

SetCursor 0,0
speed#=10
If UpKey() Then basez#=basez#-speed#
If DownKey() Then basez#=basez#+speed#
If basez#>500 Then Basez#=500
If basez#<-500 Then Basez#=-500

ax#=WrapAngle(ax#,0.31)
ay#=WrapAngle(ay#,0.42)
az#=WrapAngle(az#,0.49)

Print "Sphere Vertex List"
Print Str$(NumberOfVertex)+" Shaded Z buffered Vertex"
Print FPS()
Sync
Loop






ATLUS

Wow very nice!!!!!!!!!!!!!its impossible!!!!Great!!! Thanks Kevin!!!!!!!

kevin

#3
 Dot Sphere






 Source Code:

PlayBASIC Code: [Select]
openscreen 640,480,32,1
titlescreen PlayBasic$
dots_in_ball = 2000; How many dots are in the ball?

; Globals for the 3d.
Global numpoints = dots_in_ball; Number of points in the point table.
Global distance = 700; Needed for perspective.
Global vx#; X location.
Global vy#; Y location.
Global vz#; Z location.

; Arrays used by 3d code.
Dim points(numpoints, 3); Holds the point locations of the game over 3d.


; make points on the surface of a sphere
; calculation to make a sphere:
; x = cos(theta) * cos(phi)
; y = cos(theta) * sin(phi)
; z = sin(theta)
; where theta = -90 to 90
; and phi = 0 to 360
For t= 1 To dots_in_ball
xd = Rndrange(-90,90)
x0 = (Cos(xd) * 10) * (Cos(t) * 10)
y0 = (Cos(xd) * 10) * (Sin(t) * 10)
z0 = Sin(xd) * 100
points(t,1) = x0
points(t,2) = y0
points(t,3) = z0
Next

; Precalc the shading
Dim DepthDueTable(500)
For lp=-200 to 200
DepthDueTable(lp+200)=SetColor(lp)
next

; Loop till esc is pressed.
do
cls rgb(0,0,0)
threed(); Call the threed thing.
print "Depth Colored Real 3D Dot Ball"
print fps()
sync; Flip the screen.
loop

Function threed()
vx# = vx# + 0.5; X rotation speed of ball.
vy# = vy# + 0.5; Y rotation speed of ball.
vz# = vz# + 0.5; Z rotation speed of ball.

lockbuffer

cvx#=Cos(vx#)
svx#=Sin(vx#)

cvy#=Cos(vy#)
svy#=Sin(vy#)

cvz#=Cos(vz#)
svz#=Sin(vz#)

For n = 1 To numpoints
x3d = points(n, 1)
y3d = points(n, 2)
z3d = points(n, 3)

ty# = ((y3d * cvx#) - (z3d * svx#))
tz# = ((y3d * svx#) + (z3d * Cvx#))
tx# = ((x3d * Cvy#) - (tz# * svy#))
tz# = ((x3d * svy#) + (tz# * Cvy#))
ox# = tx#
tx# = ((tx# * cvz#) - (ty# * svz#))
ty# = ((ox# * svz#) + (ty# * cvz#))

nx = Int(512 * (tx#) / (distance - (tz#))) + 320
ny = Int(240 - (512 * ty#) / (distance - (tz#)))

dotc nx,ny,DepthDueTable(tz#+200)
Next
unlockbuffer

EndFunction

; This function looks at the z-value of the pixel
; and sets the color accoordingly.
Function setcolor(t#)
If t# <= 100 And t# >= 75
c= rgb(250,250,250)
EndIf
If t# <= 75 And t# >= 50
c= rgb(225,225,225)
EndIf
If t# <= 50 And t# >= 25
c=rgb(200,200,200)
EndIf
If t# <= 25 And t# >= 0
c= rgb(175,175,175)
EndIf
If t# <= 0 And t# >= -25
c= rgb(150,150,150)
EndIf
If t# <= -25 And t# >= -50
c= rgb(125,125,125)
EndIf
If t# <= -50 And t# >= -75
c=rgb(100,100,100)
EndIf
If t# <= -75 And t# >= -100
c=rgb(50,50,50)
EndIf
EndFunction c







This PlayBASIC code creates a rotating sphere of vertices on the screen using 3D graphics. Here's a detailed explanation of the code:

   Setting up the Screen:


PlayBASIC Code: [Select]
openscreen 640,480,32,1
titlescreen PlayBasic$
dots_in_ball = 2000; How many dots are in the ball?



The openscreen command initializes a graphical window with a resolution of 640x480 pixels and a color depth of 32 bits. dots_in_ball is a variable representing the number of points in the sphere.

Global Variables and Arrays:

PlayBASIC Code: [Select]
Global numpoints = dots_in_ball; Number of points in the point table.
Global distance = 700; Needed for perspective.
Global vx#; X location.
Global vy#; Y location.
Global vz#; Z location.
Dim points(numpoints, 3); Holds the point locations of the game over 3d.




Global variables are declared to store information about the 3D environment. An array points is created to hold the 3D coordinates of the points on the sphere.

Creating Points on the Sphere:

PlayBASIC Code: [Select]
For t = 1 To dots_in_ball
' Calculation to make a sphere:
' x = cos(theta) * cos(phi)
' y = cos(theta) * sin(phi)
' z = sin(theta)
' where theta = -90 to 90 and phi = 0 to 360
xd = Rndrange(-90,90)
x0 = (Cos(xd) * 10) * (Cos(t) * 10)
y0 = (Cos(xd) * 10) * (Sin(t) * 10)
z0 = Sin(xd) * 100
points(t,1) = x0
points(t,2) = y0
points(t,3) = z0
Next



This loop generates points on the surface of a sphere using spherical coordinates.

Precalculating Shading:

PlayBASIC Code: [Select]
Dim DepthDueTable(500)
For lp = -200 to 200
DepthDueTable(lp + 200) = SetColor(lp)
next



A table (DepthDueTable) is precalculated to determine the color based on the depth of each point.

Main Loop:


PlayBASIC Code: [Select]
do
cls rgb(0,0,0)
threed(); Call the threed thing.
print "Depth Colored Real 3D Dot Ball"
print fps()
sync; Flip the screen.
loop



The main program loop clears the screen, calls the threed function (responsible for 3D rendering), and prints information on the screen.

3D Rendering Function (threed):


PlayBASIC Code: [Select]
Function threed()
' Rotation speeds
vx# = vx# + 0.5
vy# = vy# + 0.5
vz# = vz# + 0.5

' Lock buffer for drawing
lockbuffer

' Calculate rotation matrices
cvx# = Cos(vx#)
svx# = Sin(vx#)
cvy# = Cos(vy#)
svy# = Sin(vy#)
cvz# = Cos(vz#)
svz# = Sin(vz#)

' Loop through each point and perform 3D transformations
For n = 1 To numpoints
' Extract point coordinates
x3d = points(n, 1)
y3d = points(n, 2)
z3d = points(n, 3)

' Apply rotation transformations
ty# = ((y3d * cvx#) - (z3d * svx#))
tz# = ((y3d * svx#) + (z3d * cvx#))
tx# = ((x3d * cvy#) - (tz# * svy#))
tz# = ((x3d * svy#) + (tz# * cvy#))
ox# = tx#
tx# = ((tx# * cvz#) - (ty# * svz#))
ty# = ((ox# * svz#) + (ty# * cvz#))

' Perspective projection
nx = Int(512 * (tx#) / (distance - (tz#))) + 320
ny = Int(240 - (512 * ty#) / (distance - (tz#)))

' Draw the point with depth-based color
dotc nx, ny, DepthDueTable(tz# + 200)
Next

' Unlock buffer
unlockbuffer
EndFunction



The threed function is responsible for updating the 3D rotation angles, performing 3D transformations on each point, and rendering the points on the screen with depth-based color.

Color Setting Function (setcolor):

PlayBASIC Code: [Select]
    Function setcolor(t#)
' Set color based on depth value
If t# <= 100 And t# >= 75
c = rgb(250,250,250)
' ... (similar checks for other depth ranges)
EndIf
EndFunction c




   The setcolor function assigns a color based on the depth value of a point.

Overall, the code generates a rotating 3D sphere with points on its surface, applying perspective projection and depth-based color shading. The rotation speeds and color gradients are adjustable based on the specified parameters.





ATLUS

so vertex and Graphics code work equally?